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The magnetic-field dependence of the third-order excitonic nonlinear susceptibilityx (3) in a quantum wire is
explored within the rotating wave approximation. Both the real and imaginary parts ofx (3), arising from
population saturation of the excitonic state under optical pumping, are calculated for a GaAs wire as a function
of magnetic field and pump-probe detuning frequencies. The imaginary part ofx (3) exhibits a negative peak
associated with the bleaching of the excitonic resonance and a positive, broad, off-resonance absorption peak
associated with biexciton formation. The amplitude, line shape, and spectral frequency of both these peaks can
be modulated by a magnetic field which indicates the possibility of using such a field to probe the mechanism
underlying optical nonlinearity in a quantum wire. Furthermore, the field can also be used to tune the optical
nonlinearity over a range of frequencies which has device applications.@S0163-1829~96!04228-2#

I. INTRODUCTION

It is well known that quasi-one-dimensional systems
~quantum wires! exhibit giant third-order nonlinear suscepti-
bility x (3) under optical pumping because of quantum con-
finement of excitons and polyexcitonic complexes.1,2 A mag-
netic field further increases the confinement by localizing the
electron and hole wave functions, leading to even larger
x (3). This allows one to modulate the nonlinear refractive
index and absorption~or gain! in quantum wires with a mag-
netic field, thereby opening up the possibility of realizing
externally tunable couplers, limiters, phase shifters,
switches, etc. Furthermore, the field can also be used as an
experimental tool to extract the specific mechanism respon-
sible for the optical nonlinearity in the system.

In this paper, we will investigate the effects of a magnetic
field on optical nonlinearity~and the associatedx (3)) in a
quantum wire caused by exciton-exciton interaction and for-
mation of excitonic molecules~specifically biexcitons!. This
interaction is likely to be the dominant mechanism for opti-
cal nonlinearity, and the leading contribution tox (3) in quan-
tum wires of most technologically important semiconductors.
Recently some researchers2,3 reported experimental observa-
tions of giant optical nonlinearity in quantum wires which
they attributed to this mechanism. The enhanced nonlinearity
is undoubtedly caused by quantum confinement which in-
creases the binding energy of all excitonic complexes. Addi-
tionally, the oscillator strength for the lowest-energy exciton-
to-biexciton transition increases and gives rise to huge third-
order susceptibilities. This oscillator strength is already
significant because the biexciton radius is very large,4 and a
second photon~two-photon absorption! in the volume of an
excitonic molecule can be easily found and absorbed to cre-
ate the molecule.

In Sec. II, we outline the theoretical framework that was
used for calculatingx (3) associated with population satura-
tion of the excitonic state and biexciton formation. Section
III presents the results of our numerical computation fol-
lowed by a discussion. We also compare the results that we

obtain ~in the absence of any magnetic field! with the theo-
retical calculations of Ref. 4, and with available experimen-
tal data. Conclusions are given in Sec. IV.

II. THEORETICAL MODEL

We consider a rectangular GaAs quantum wire of the ge-
ometry shown in the inset of Fig. 1. An external magnetic
field of flux densityB is applied perpendicular to the wire
axis, as indicated in the inset. In order to calculatex (3) for
this system, we make the following assumptions:~i! x (3) is
measured in a nondegenerate pump-and-probe spectroscopy
experiment with nearly resonant pumping of the excitonic
state; ~ii ! the exciton gas is sufficiently dilute that higher-
order complexes~beyond the biexcitonic state! can be ne-
glected;~iii ! the rotating wave approximation5 is valid; and
~iv! in the frequency range of interest, the lowest-lying states
are the major contributors tox (3) and therefore we can treat
the system approximately as a two-level system.

Following Ishihara2 and Madaraszet al.,4 we can write
the third-order susceptibility as follows:
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where v2 and v1 are the pump and probe frequencies,
\vg0 is the exciton ground-state energy,\vb is the biexci-
ton binding energy,m0 is the rest mass of a free electron, and
N0 is the average areal density of unit cells. The quantities
G i j andg are the transverse and longitudinal broadening pa-
rameters~or damping constants!, andEp is the Kane matrix
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element. The indicesi or j indicates system ground state~0!,
exciton ground state (g), and biexciton ground state (b).
The values of the parameters used are listed in Table I, and
correspond to GaAs. Parametersh and t physically corre-
spond to the exciton and biexciton correlation lengths~elec-
tron hole and hole hole mean separations in the two cases!,
and have to be determined variationally for each magnetic-
field strength and for each set of wire dimensions following
the prescription given in Refs. 6 and 7.

The exciton ground-state energy\vg0 is defined as fol-
lows:

Eg
X5\vg05EG1Ee11Ehh12EB

X , ~2!

whereEG is a bulk band gap of the material,Ee1 andEhh 1
are the lowest electron and the highest heavy-hole magneto-
electric subband bottom energies in a quantum wire~mea-
sured from the bottom of the bulk conduction band and the
top of the bulk valence band! respectively, andEB

X is the
ground-state exciton binding energy which is also deter-
mined variationally.6,7

One should note from Eq.~1! thatx (3) is a strong function
of the transverse and longitudinal broadening parameters
G i j andg. Physically,g is related to the population decay
rate of the excitonic states. The smaller the value ofg, the
larger the lifetime of excitons and the higher the probability
of forming a biexciton in a two-step photon absorption. The
transverse broadening parametersG i j represent, foriÞ j , the
phenomenological coherence decay rate of thei j transition,
while, for i5 j , they describe the population decay of the

statei . The population decay rate, in its turn, is determined
by the dominant scattering mechanism in the sample. In most
cases, the values ofG i j andg are difficult to obtain experi-
mentally, and fairly difficult to estimate theoretically. More-
over, these parameters could be strong functions of the con-
finement, population density of excitons, magnetic field, and
temperature. In view of little experimental data available,
and in order to simplify the calculations, we assume that
G i j5G for all i and j .

Since in this work we are interested in the modulation of
the nonlinear response of quantum wires with a magnetic
field, the influence of the field on the above parameters is
especially important. The value ofG in quantum wires is
primarily determined by carrier-phonon interaction.8 As
shown in Ref. 8, the scattering rates associated with these
interactions can be affected by a magnetic field at any given
kinetic energy of an electron or hole. However, when the
rates are averaged over the energy, the magnetic-field depen-
dence turns out to be quite weak. As a first approximation,
we can therefore consider the rates to be independent of the
magnetic field. We also neglect thermal broadening of the
damping parameters, since it is less important in quantum
confined systems than in bulk.9 An important property of Eq.
~1! is the following. If all the transverse relaxation param-
eters are assumed to be equal~like in our case! and the biex-
citon binding energy (\vb) approaches zero, thenx

(3) van-
ishes. This is a reflection of the well-known fact that
noninteracting ideal independent bosons do not show any
nonlinearity.10 Consequently, exciton-exciton interaction,
leading to biexciton formation, is necessary for the existence
of nonlinearity.

A calculation of the excitonic contribution tox (3) requires
that the exciton and biexciton binding energies be obtained
first. Additionally, the parametersh andt need to be found.
For details of computing these energies and these parameters
in the case of a quantum wire subjected to a magnetic field,
we refer the reader to our past work.6,7,11Once these quan-

FIG. 1. The absolute value of the third-order
susceptibilityx (3) ~for resonant excitation! as a
function of wire width for two different values of
magnetic field. The inset shows the wire geom-
etry and the orientation of the magnetic field. The
wire thickness along thez direction is 200 Å .

TABLE I. Physical parameters for GaAs.

EG51.519 eV
\G53 meV
Ep523 eV
N057.8931014/cm2
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tities are evaluated, we can calculatex (3) from Eq. ~1! as a
function of magnetic field, wire width, and pump-probe de-
tuning frequencies.

III. RESULTS AND DISCUSSION

All results in this paper are pertinent to GaAs quantum
wires. In Fig. 1, we plot the absolute value ofx (3) as a
function of the wire width for a fixed wire thickness of 200
Å , with and without a magnetic field. The susceptibility
peaks at about 0.97 esu, corresponding to a wire width of
about 100–120 Å . The sharp drop at smaller wire widths is
caused by a fast rise in electron and hole confinement ener-
gies Ee1 and Ehh1 with shrinking wire width. This rise is
faster than the rise in the exciton binding energyEB

X , which
eventually leads to a decrease inux (3)u. For dimensions
larger than 120–150 Å , the ground-state energy varies little,
and the behavior ofx (3) is primarily determined by the ef-
fective exciton and biexciton correlation lengthst and h.
When no magnetic field is present, botht and h increase
with increasing wire width, buth increases at a faster rate.
Consequently, the term (t/h2) decreases monotonically with
increasing wire width, makingx (3) decrease. This decrease
is somewhat offset by the variation of the ground-state exci-
ton energy, which causes the roll-off rate to be more gentle
than at small wire widths. For a nonzero magnetic field~of
10 T!, the exciton radiush in a quantum wire has anon-
monotonicdependence on wire width which results in a well-
resolved maximum inh. This rather surprising behavior was
reported by us earlier,11 and explained in terms of the
complementary roles of electrostatic and magnetostatic con-
finement. The biexciton radiust also has a maximum, but it
is much broader and shallower than the one associated with
h. Consequently, there exists a minimum in the ratiot /h2

which causesx (3) to exhibit a nonmonotonic dependence on
the wire width~past the maximum! when a magnetic field is
present. This accounts for the broad valley in the curve when
a magnetic field of 10 T is applied.

In Figs. 2–4 we have calculated Imx (3) for a two-beam
experiment in which the frequency of one beam, the pump, is
fixed, and that of the other, the probe, is allowed to vary over
a frequency range of\Dv540 meV centered around the
pump frequency. In Figs. 2 and 4, the pump frequency is
chosen to be resonant with the exciton ground-state transi-
tion, and in Fig. 3 the pump is detuned from the exciton
resonance by a frequency2G/(21/2\). It is important to
remember that since the ground-state exciton binding energy
is a function of magnetic field, the pump should be retuned
every time the magnetic field changes. In all figures, the
imaginary part of the third-order susceptibility is plotted for
four values of magnetic field. The significance of Imx (3) is in
that it is proportional to the differential change in the optical
transmission or in the absorption coefficientDa. This rela-
tion is given by the formula12

Imx~3!5
c2n0

2Da~v!

8p2vI ~v!
, ~3!

wheren0 is a linear refractive index,c is the speed of light,
and I (v) is the intensity of a resonant monochromatic light
beam. Positive peaks in Imx (3) will correspond to strong

absorption and negative peaks to the spectral regions of
strong transmission~bleaching bands!.

Figure 4 illustrates the dependence of third-order suscep-
tibility on the longitudinal broadening parametersg ~atten-
tion should be paid to the change of scale along the vertical
axis compared to Fig. 2!. The difference between Figs. 2 and
4 is that, in the former case, the longitudinal broadening
parameter is one-tenth that of the transverse broadening pa-
rameter, whereas in the latter figure they are equal. Imx (3) is
extremely sensitive to the magnitude ofg: varying this
damping parameter fromg50.1G to g5G changes the value
of Imx (3) by more than an order of magnitude.

FIG. 2. The imaginary part of the third-order susceptibility as a
function of the probe detuning energy for a dual-beam pump-probe
experiment. The pump is set at exciton resonance for each value of
magnetic field, and the longitudinal broadening parameter is as-
sumed to be one-tenth the value of the transverse broadening pa-
rameters.

FIG. 3. The imaginary part of the third-order optical suscepti-
bility as a function of the probe detuning energy for a dual-beam
pump-probe experiment. The pump is detuned slightly below the
exciton resonance for each value of magnetic field. Again, the lon-
gitudinal broadening parameter is one-tenth the value of the trans-
verse broadening parameters as in Fig. 2.
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A pronounced negative peak is present in all of the spec-
tra. It represents a strong transmission which is due to a
saturation~or bleaching! of the excitonic state. Physically,
the initial exciton population created by the pump beam
tends to amplify the probe beam when its energy is tuned at
or near the exciton ground state~this corresponds to the lin-
ear gain peak!. A magnetic field makes the peak deeper,
without significant broadening, thus enhancing transmission
further. At first glance, it may surprise the reader that the
peak is not shifted in frequency by the magnetic field even
though the exciton binding energy depends on the magnetic
field. The reason for this is that the probe beam is retuned to
the exciton resonance for each value of the magnetic field, so
that no frequency shift should arise.

Another feature of interest in all of these plots is in the
region of positive Imx (3) that corresponds to optical absorp-
tion. This absorption may be attributed to the formation of
the excitonic molecule~biexciton!.4,13,14 The initial exciton
population enables the probe to be more strongly absorbed
when its energy matches the exciton-biexciton transition en-
ergy\(vg02vb). Consequently, at zero magnetic field, the
positive peak is separated from the exciton resonance by ap-
proximately25 meV, which corresponds to the biexciton
binding energy for this case. At a magnetic flux density of 5
T the peak separation is about27.5 meV, which again cor-
responds to the biexciton binding energy, this time for a flux
density of 5 T. Such a dependence of the energy difference
between transmission~negative peak! and absorption~posi-
tive peak! on a magnetic field can be used to modulate the
optical properties of a quantum wire with an external field. It
can also be used as a means to determine the particular
mechanism causing nonlinearity in a quantum wire. Note
that the energy separation between the peaks is not seriously
affected by the increasing damping~see Fig. 4! or by the
detuning of the pump~see Fig. 3!. As a result, this technique
of modulation with a magnetic field cannot only be used to

extract the mechanism responsible for nonlinearity, but also
to measure biexciton binding energies and their dependences
on a magnetic field.

Figure 5 shows Imx (3) for four values of a magnetic field
and a small longitudinal dampingg50.1G. The difference
between this case and the one presented in Fig. 2 is that now
the pump beam is permanently tuned to the exciton reso-
nance at zero magnetic field, and not retuned every time the
magnetic field changes. Since the ground-state exciton en-
ergy is a function of magnetic field, the negative peak in Fig.
5 is now shifted by the applied magnetic field. Another im-

FIG. 6. The imaginary part of the third-order susceptibility as a
function of an applied magnetic field for two different wire widths.
The thickness of the wire is 200 Å . The effect of a magnetic field
is more pronounced for a wider wire since the wave functions of the
electrons and holes are ‘‘softer’’ and more ‘‘squeezable’’ by a mag-
netic field if the wire is wider.

FIG. 4. The imaginary part of the third-order optical suscepti-
bility as a function of the probe detuning energy for a dual-beam
pump-probe experiment. The pump is set at exciton resonance at
each value of a magnetic field as in Fig. 2, but the longitudinal
broadening parameter is equal to the transverse broadening param-
eters. Attention should be paid to the change of scale along the
vertical axis compared to Fig. 2.

FIG. 5. The imaginary part of the third-order susceptibility as a
function of the probe detuning energy for a dual-beam pump-probe
experiment. The pump is now set at the exciton resonance at zero
magnetic field and not retuned every time the magnetic field
changes. Again, the longitudinal broadening parameter is one-tenth
the value of the transverse broadening parameters as in Fig. 2. Due
to the pump detuning at nonzero magnetic field, both exciton and
biexciton resonances are quenched.
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portant feature to notice is that when the pump isnot tuned
to an exciton resonance at a particular magnetic field, the
magnitudes of both the positive and negative peaks are re-
duced by the magnetic field, leading to a quenching of both
absorption and transmission. This effect is opposite to what
is observed when the pump is tuned to the exciton resonance.
However, this effect has immediate device applications such
as the quantum-confined Lorentz effect.15

In Figs. 6 and 7 we present the imaginary and real parts of
the third-order susceptibility as functions of an applied mag-
netic field for two different wire widths. The effect of a
magnetic field is quite strong. At a magnetic flux density of
10 T, uImx (3)u is approximately three times larger than at
zero field for the 700 Å -wide wire. Again, the effect of a
magnetic field is more pronounced for wider wires, since in
wider wires the magnetostatic localization is stronger.11

We have compared our results for zero magnetic field
with those given in Ref. 4. The ground-state binding energies
for both excitons and biexcitons are in excellent qualitative
agreement. Some discrepancy can be attributed to different
values of electron and hole effective masses used in our cal-
culations and the calculations of Ref. 4. We also compare
our binding energy results with the experimental observa-
tions of Refs. 16–18. Since Ref. 16 employedT-shaped edge
quantum wires whose geometries are very different from
ours, a direct quantitative comparison is not possible. None-
theless, we find that our numerical results are within the
same order of magnitude as theirs, and that their data are in
excellent qualitative agreement with ours. The Imx (3) curves
for zero magnetic field are also consistent with those given in
Refs. 4, 14, and 19. In Fig. 8, we present a direct comparison
of the wire-width dependence ofx (3) obtained with zero
magnetic field with the result given in Ref. 4. The slight
discrepancy of 15–20 % is a result of using different electron

and hole effective masses in the calculation of exciton and
biexciton binding energies. Other factors, such as the exact
choice of the variational wave function, also contribute to the
difference.

Again, in most cases, a complete quantitative comparison
of the data is not possible because of the different geometry
of the wires used. In our model calculations, we utilized wire
sizes that are typical for structures delineated by lithography,
and that correspond to the regime of moderate quantum con-
finement.

IV. CONCLUSION

We have investigated the effects of a magnetic field on
the third-order nonlinear susceptibility in quantum wires.
The magnetic field modulates the frequency shift between
the transmission peak associated with the bleaching of exci-
tonic transitions and the absorption peak associated with the
formation of excitonic molecules~biexcitons!. Additionally,
the field also affects the magnitudes of the peaks. These ef-
fects can be utilized for magneto-optical devices, and can
also be used as a tool to probe the precise mechanism re-
sponsible for optical nonlinearity in quantum wires.
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FIG. 7. The real part of the third-order susceptibility as a func-
tion of an applied magnetic field for two different wire widths. The
thickness of the wire is 200 Å .

FIG. 8. Comparison of the wire-width dependence of the abso-
lute value of the third-order susceptibility~resonant excitation! with
the result given in Ref. 4. The discrepancy~15–20 %! is an after-
math of different values of material parameters used in the two
studies. The thickness of the wire is 200 Å in both cases.
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